SYLLABUS OF

M. TECH (Hydraulics and Water Resources Engineering) II YEAR

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABI AND EVALUATION SCHEME

M.Tech. (Hydraulics and Water Resources Engineering)

(w.e.f. Batch 2020-21)

Semester – III

					Perio	ds	Credits	Evaluation Scheme					
S. No.	S. Course Code No. Category No		Name of Subject	L	Т	Р	С	C A	Continu Assessn (CA)	ious nent)	Exam ESE	Subject Total	
					UE TA Total								
1	DE		Elective - II	3	1	-	4	40	20	60	40	100	
2	DE		Elective - III	3	1	-	4	40	20	60	40	100	
3	DE		Elective - IV	3	1	-	4	40	20	60	40	100	
4	DC	CE675	Directed Study	-	-	-	4	-	-	-	100	100	
5	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	
Total 20									500				
Sem	ester – I	V											
				P	eriod	s	Credits	H	Evaluat	tion Sch	eme		
S.	Course	Code	N 601.4					C	ontinu	us		Subject	
No.	Category	No	Name of Subject	L	Т	Р	С	A	ssessment (CA)		EXAM ESE	Total	
								UE	TA	Total	202		
1	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	
2	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	
3	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	
4	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	

16

400

TA- Teacher Assessment; **ESE** – End Semester Examination; **CT-** Cumulative Test. Note: Duration of ESE shall be 03 (Three) hours per subject

Total

M. Tech (Hydraulics and Water Resources Engineering)

List of the Elective Paper:

<u>Elective – I</u>

CE555	Mathematics and Statistics for Hydraulic Engineering
CE558	Modeling Simulation and Optimization
CE560	Advanced Numerical Analysis
CE561	Flood and Drought

<u>Elective – II</u>

CE660	Remote Sensing and GIS in Water Resources Engineering
CE661	Hydro Power Engineering
CE662	Advanced Irrigation Engineering

<u>Elective – III</u>

CE664	Fluvial Hydraulics
CE665	Application of Soft Computing Technique in Hydrology
CE666	River Engineering

<u>Elective – IV</u>

CE668	Hydraulic Structures
CE669	Watershed Management
CE670	Earth and Rock Fill Dams

TA- Teacher Assessment; ESE- End Semester Examination; CT- Cumulative Test Note: Duration of ESE shall be 03 (Three) hours per subject.

C

4

Effective from Session: 2019-20 CE662 Advanced Irrigation Engineering **Course Code** Title of the Course L Т P Year 2^{nd} 3rd 3 0 Semester 1 **Pre-Requisite** NIL **Co-requisite** NIL To introduce the water resources in India, need of irrigation, advantages and Criteria for good Irrigation • management. To learn about the classification of soil water, soil water plant relationship and soil moisture • **Course Objectives** measurement. To introduce the basic Water requirement of crops, Evapotranspiration and consumptive use of water • • To introduce the Surface irrigation methods, types and canal design

		-	• •	-
•	To learn the sprinkle	and drip irrigation	and component	s design.

	Course Outcomes
CO1	To understand the water resources in India and their needs and criteria for good irrigation management.
CO2	To understand the basic concept of soil water and plant relationship and soil moisture measurement.
CO3	To understand the basic concept of requirement of water for a crops and consumptive use of water.
CO4	To understand the methods of surface irrigation, types and canal design.
CO5	To understand the sprinkler and drip irrigation and criteria of adopting the method of irrigation and design of the components

Unit No.	Title of the Unit	Fitle of the Unit Content of Unit						
1	Development of Irrigation	08hrs	CO1					
2	Soil Water Plant Relationship	08hrs	CO2					
3	Crop Water Requirement	Water requirement of crops- Evapotranspiration and Consumptive use- Methods of estimating Evapotranspiration- Effective Rainfall- Irrigation Requirement-Duty of Water- Irrigation Efficiencies- Irrigation Scheduling- Irrigation measurement.	08hrs	CO3				
4	Surface Irrigation Methods	Canal network and canal design- Surface irrigation methods- Types- Border irrigation, Furrow irrigation and Strip irrigation- Specifications, Hydraulics and Design.	08hrs	CO4				
5	Drip and Sprinkler Irrigation Method	08hrs	CO5					
		Reference Books:						
М	lajumdar D.P," Irrigatio	on Water Management Principles and Practices", Prentice Hall of India, New De	elhi, 2004.					
М	Michael A. M., "Irrigation Theory and Practice", Vikas Publishing House, New Delhi, 2009.							
Sharma R.K and Sharma T.K., "Irrigation Engineering", S. Chand, New Delhi, 2008.								
		e-Learning Source:						
ht	tps://nptel.ac.in/course	s/105102159/						

https://nptel.ac.in/courses/105105110/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	0	0	0	1	2	0	0	0	2	0	0	0
CO2	3	1	1	0	0	1	2	0	0	0	0	0	0	0
CO3	2	2	1	0	0	2	2	0	0	0	0	0	0	0
CO4	2	0	3	0	0	2	1	1	1	2	1	1	0	0
CO5	2	1	3	0	0	2	2	1	1	2	1	1	0	0

1- Low Correlation: 2- Moderate Correlation: 3- Substantial Correlation

1 Low Correlation, 2 moderate Corr	charlon, 5 Substantial Correlation
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20							
Course Code	CE666	Title of the Course	River Engineering	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives • To understand theoretical concepts of water and sediment movements i the benefits of fluvial system to the society.					also to	inculc	ate

	Course Outcomes
CO1	To understand the Primary function of River, Water and Sediment loads of river, Rivers in India.
CO2	To understand the Physical Properties of river and Equations of different types of flow in rivers, velocity profile,
	uniform and non-uniform, turbulence, Diffusion and Dispersion
CO3	To understand about the Stability of Channel, hydraulic geometry of downstream, meandering, River dynamics,
	degradation and aggradations of river bed.
CO4	To understand about Mapping, Stage, Discharge Measurements in river, Sediments, Bed and suspended load, Rigid and
	mobile bed, Water Quality and ecological model
CO5	To understand the river training work and river regulation work, flood plain measurement and river stabilization

Unit Title of the Contact Mapped **Content of Unit** Unit Hrs. СО No. Primary function of a river - River uses and measures - Water and Sediment loads River 08hrs CO1 1 Functions of river - Rivers in India, Himalaya and Peninsular Physical Properties and Equations - Steady flow in rivers - uniform and nonuniform - Turbulence and velocity profiles -resistance coefficient, Boundary conditions and back waters, Transitions, Rating Curve, Unsteady flow in rivers: River CO2 2 08hrs Hydraulics Propagative of surface waves - Characteristics, flood waves - kinematic and diffusion analogy - velocity of propagation of flood waves-Flood wave -Maximum Fundamental relationships for flow and transport, Diffusion and Dispersion River Equilibrium : Stability of Channel - regime relations - river bend equilibrium River - hydraulic geometry of downstream - Bars and meandering - River dynamics -CO3 3 08hrs Mechanics degradation and aggradation of river bed - Confluences and branches - River Data base. Mapping, Stage and Discharge Measurements, Sediments, Bed and suspended load, River 4 Surveys and Physical hydraulic Similitude, Rigid and mobile bed, Mathematical - Finite one 08hrs CO4 Model dimensional, multi - dimensional - Water Quality and ecological model River training works and river regulation works - Flood plain management - waves River 5 08hrs CO5 Management and tides in Estuaries - Interlinking of rivers - River Stabilization **Reference Books:**

JansonPL.Ph., LvanBendegamJvanden Berg, Mdevries A. Zanen (Editors), Principles of River Engineering – The non-tidal alluvial rivers – Pitman, 1979.

Pierre Y. Julien., River Mechanics, Cambridge University Press, 2002

K.L Rao, INDIA's WATER WEALTH - Orient Longman Ltd., 1979

RangaRaju - New Age Int. Publications

e-Learning Source:

https://nptel.ac.in/content/storage2/courses/105105110/pdf/m6l01.pdf

				Cours	e Articu	lation N	Matrix:	(Mappi	ng of CC)s with PO	Os and PS	SOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	1	0	0	0	2	2	0	0	1	1	0	1	1
CO2	2	2	1	2	0	2	2	0	0	0	1	1	2	2
CO3	3	2	3	1	0	1	1	0	0	0	1	1	2	2
CO4	3	2	1	1	0	1	3	0	0	0	1	0	2	2
CO5	2	3	2	1	0	1	1	0	0	2	1	1	2	2
	1. Low Correlation: 2. Moderate Correlation: 3. Substantial Correlation													

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20										
Course Code	CE668	Title of the Course	Hydraulic Structure	L	Т	Р	С				
Year	2 nd	Semester	3 rd	3	1	0	4				
Pre-Requisite	NIL	Co-requisite	NIL								
	• To understand the basic concept of site selection of dam and Types of dam,										
Course Objectives	• To understand the Design criteria, Elementary profile of gravity dam and stability of dam										
course conjectives	• To kn	low the safety criteria,	force acting on the gravity dam, function of	spill	way a	nd en	ergy				
	dissip	aters.									

	Course Outcomes
COI	Students will be able to understand the criteria of site Selection of dam, Forces acting on darns, Elementary profile of a
COI	gravity dam, Stability analysis and methods of determination of shear stress.
CO2	Students will be able to understand the Arch dam, Types of arch dams, Design of arch dam, Valleys suited for arch darns,
02	Thin cylinder theory, Most economical central angle and Effects of foundation elasticity on arch dam.
CO3	Students will be able to understand the Buttress dam, Types of buttress dam, Design principles, Buttress design by Unit
005	column theory and Basic shape of buttress.
CO4	Students will be able to understand the Spillways, Types of spillways, Design principles of spillway, Hydraulic design of
004	spillways and Energy dissipation below spillways.
COS	Students will be able to understand Theory of similarity, dimensional analysis, Basic concepts, Froude law, Reynolds law,
005	Mach law, Cavitations number and Modeling technique.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Gravity Dams	Introduction, Selection of dam sites, Forces acting on darns, Elementary profile of a gravity dam, Stability analysis and Safety criteria, Graphical determination of shear stress, Galleries. Difference between weirs & barrages.	08hrs	CO1				
2	Arch Dam	Definition, Types of arch dams, Design of arch dam, Valleys suited for arch darns, Thin cylinder theory, Most economical central angle, Effects of foundation elasticity on arch dam.	08hrs	CO2				
3	Buttress Dam	pes of buttress darn, Selection of buttress dam, Most economical profile having no sion, Design principles, Buttress design by Unit column theory, Basic shape of ttress.						
4	Spillways and Energy Dissipaters	Spillways, Types of spillways, Design principles of spillway, Hydraulic design of spillways, Energy dissipation below spillways, Bucket type energy dissipaters, Design of various types of stilling basins.						
5	Hydraulic Models	Theory of similarity, dimensional analysis, Basic concepts, Froude law, Reynolds law, Mach law, Cavitation number, Modeling technique.	Theory of similarity, dimensional analysis, Basic concepts, Froude law, Reynolds law, 08hrs Mach law, Cavitation number, Modeling technique.					
		Reference Books:						
E	ngineering for l	Dams by Creager, Justin & Hinds, Willey Eastern Pvt. Ltd., Delhi.						
C	oncrete Dams b	y R.S. Varshney, Oxford & IBH Pub. Co. Delhi.						
D	ams-Part I Gra	vity Dams by K.B. Khushalani, Oxford & MN, Delhi.						
D	esign of Weirs	on Permeable Foundations, CBIP Pub. No 20, Delhi.						
G	Garg, S.K., "Irrigation Engineering and Hydraulic Structures," Khanna Publishers.							
		e-Learning Source:						
ht	https://nptel.ac.in/content/storage2/courses/105105110/pdf/m4l06.pdf							
ht	tps://nptel.ac.ir	n/content/storage2/courses/105105110/pdf/m4l04.pdf						

				Cours	e Articu	lation N	Aatrix:	(Mappi	ng of CC)s with PO	Os and PS	SOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	2	1	1	1	0	0	1	0	2	2	0	1	0	0
CO2	2	1	3	1	0	0	2	0	1	0	2	1	0	0
CO3	2	1	3	0	0	0	2	0	1	1	2	0	0	0
CO4	2	0	3	0	0	0	2	0	2	0	1	2	0	0
CO5	2	1	3	2	0	0	2	0	0	0	1	2	0	0
			1 T	0	1 4 6		4 0	1 4*	2 0 1	4 4 14	a 14			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17 Title of the CE675 Directed Study Т Р С **Course Code** L Course 2nd 3rd Year Semester 0 0 0 4 **Pre-Requisite** NIL NIL **Co-requisite** Course Objectives To make learner aware about the latest technology and engineering practices in industries. ٠

Course Outcomes

CO1 Awareness regarding the latest technology, engineering methodology and practices being used in industries.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO	
	Undergo industrial training in any respective industry in order to get familiar with the latest			
	technology, engineering techniques and practices being used in the industry. Have to absorb some			
1	skill from the training identifying the area of improvement. The concepts/skills must be clearly	03hrs	CO1 and	
	understood and presented by the student. A hard copy of the report should be submitted to the		02	
	Department after the completion of directed study.			

Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	3	3	3	0	0	3	3	0	3	3	3
	PO2 0	PO2 PO3 0 0	PO2 PO3 PO4 0 0 3	PO2 PO3 PO4 PO5 0 0 3 3	PO2 PO3 PO4 PO5 PO6 0 0 3 3 3	PO2 PO3 PO4 PO5 PO6 PO7 0 0 3 3 3 0	PO2 PO3 PO4 PO5 PO6 PO7 PO8 0 0 3 3 0 0	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 0 0 3 3 0 0 3	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 0 0 3 3 3 0 0 3 3	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 0 0 3 3 3 0 0 3 3 0	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 0 0 3 3 0 0 3 3 3 3 </th <th>PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 0 0 3 3 0 0 3 3 0 3 3 3</th>	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 0 0 3 3 0 0 3 3 0 3 3 3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2016-17						
Course Code	CE699	Title of the Course	M Tech dissertation	L	Т	Р	С
Year	2^{nd}	Semester	3 rd and 4 th	0	0	0	20
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	 To dev To nur To imp To dev To dev To dev 	velop individuality ar ture ability to perfor prove critical thinkin velop skill to use vari velop skill to think cr nance the writing skil	nd problem analysis skill. m literature review. g ability for formulation of plan. ous engineering and technological tools. itically on research results. Il for research paper and dissertation.				

	Course Outcomes
CO1	Capability to work independently on a research-based problem.
CO2	Skill to perform review of available literature effectively to present research gap.
CO3	Aptitude to plan methodology for the attainment of various research objectives.
CO4	Competency to apply of various engineering and technological tools to carry research.
CO5	Ability to conclude work using critical thinking.
CO6	Proficiency in preparing presentation and report.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Undergo industrial training in any respective industry in order to get familiar with the latest technology, engineering techniques and practices being used in the industry. Have to absorb some	03hrs	CO1, CO2, CO3, CO4, CO5 and
	skill from the training identifying the area of improvement. The concepts/skills must be clearly understood and presented by the student. A hard copy of the report should be submitted to the		
	Department after the completion of directed study.		CO6

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO2	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO3	0	0	0	0	3	0	0	0	3	3	0	3	0	3
CO4	0	0	0	3	3	0	0	0	3	0	0	3	0	3
CO5	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO6	0	0	0	0	3	0	0	3	3	3	0	3	0	3
1- Low Correlation: 2- Moderate Correlation: 3- Substantial Correlation														

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD